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ABSTRACT 
Artificial Intelligence (AI) for accessibility is a rapidly growing 
area, requiring datasets that are inclusive of the disabled users that 
assistive technology aims to serve. We offer insights from a multi-
disciplinary project that constructed a dataset for teachable object 
recognition with people who are blind or low vision. Teachable 
object recognition enables users to teach a model objects that are 
of interest to them, e.g., their white cane or own sunglasses, by 
providing example images or videos of objects. In this paper, we 
make the following contributions: 1) a disability-first procedure to 
support blind and low vision data collectors to produce good quality 
data, using video rather than images; 2) a validation and evolution 
of this procedure through a series of data collection phases and 3) a 
set of questions to orient researchers involved in creating datasets 
toward reflecting on the needs of their participant community. 

CCS CONCEPTS 
• Human-centered computing → Accessibility; accessibil-
ity systems and tools; accessibility technologies; • Computing 
methodologies → Machine learning. 

KEYWORDS 
AI, accessibility, datasets, teachable object recognition, blind and 
low vision users 
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1 INTRODUCTION 
Artificial Intelligence (AI) is opening up new ways for people with 
disabilities to access the world [12, 46]. Object recognition has been 
one of the early uses of AI by people who are blind or low vision, in 
apps such as Seeing AI [16] (Figure 1). However, generic AI object 
recognition is currently limited to finding common items, such 
as chairs or the door of a room. Hence, attention has shifted to 
teachable object recognisers [4, 37], which can help users identify 
objects that are: 1) not covered by common generic categories (e.g., 
white canes); and 2) specific instances of an object, such as a friend’s 
car or their favourite mug. In this case, users can “teach” an object 
recogniser by providing a few, say 5-10, example images or videos 
of these objects, enabling users to extend current object recognition 
algorithms to meet their own needs. 

Enabling this application requires new machine learning (ML) 
techniques that work well when a small number of examples are 
available, termed “few-shot” learning [15, 51], and, crucially, appro-
priate user-centric datasets to drive ML innovation in this space. 
Unfortunately, current datasets either are not structured in a way 
to support user-centric few-shot learning [33], are too small [28], 
or do not include data from blind and low vision people. Other 
approaches that try to build applications from data collected from 
sighted people [37], or simulate data as if collected from people with 
disabilities [53] risk de-valuing contributions from the beneficiary 
community. A large dataset that reflects the data of the eventual end 
users, the blind and low vision community, is desperately needed to 
create feasible teachable object recognisers in this space. But how 
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Figure 1: Seeing AI uses generic object recognition to iden-
tify a pair of sunglasses. 

do we construct such a dataset that includes and supports people 
who are blind or low vision to contribute as data collectors while 
also ensuring that their contribution can successfully be integrated 
into the ML development pipeline? 

Taking a disability-first approach to data collection, the multi-
disciplinary team in the ORBIT project (https://orbit.city.ac.uk/) 
collected a dataset1 for teachable object recognisers from blind and 
low vision people. Disability-first suggests an approach that is used 
to serve a disability community first but then could be generalised 
to serve all people through the innovation that it enables. It stands 
in opposition to mainstream ML datasets and approaches which 
are later augmented or co-opted to address issues of importance to 
disabled communities. The team spent considerable time and itera-
tion crafting a disability-first data collection procedure intended to 
strike a careful balance between the structure and fidelity of data 
required for machine learning innovation and the demands put on 
data collectors. In this paper, we describe the development of this 
procedure to support data collectors who are blind or low vision to 
contribute videos to our dataset. Using iterations of data collection, 
we reflect upon these design choices and how they balance between 
data collectors’ needs and the requirements for a useful machine 
learning dataset. In doing so, we make the following contributions: 

(1) An example disability-first procedure that enables data col-
lectors who are blind or low vision to contribute to a dataset 
useful for developing teachable object recognisers. 

(2) The validation and evolution of this procedure through a se-
ries of data collection phases, reflecting the tension between 
ML innovation and demands on the data collectors. 

(3) Eight orienting questions to those creating datasets to 
encourage innovation in AI for accessibility, helping re-
searchers reflect on the needs of their participant disability 
community as data collectors. 

2 RELATED WORK 
2.1 Disability-first ML Innovations 
ML systems rely on data, both in their development of algorithms 
as well as in their application in the real world. Often data from 
disabled people differ in key ways from data from non-disabled 
people which leads to applications that do not perform as well 
1The ORBIT dataset is available for download at  https://doi.org/10.25383/city.14294597.
v2 

for people with disabilities [20, 42]. Research by Lee et al. [37], 
for example, has used data collected from a sighted and a blind 
individual to explore teachable object recognisers for blind users. 
Others have used simulated data that mimics data from disabled 
users [48, 53]. These approaches lead to data that is used to develop 
ML algorithms being very different to data that is later encountered 
in application use; for example, pictures collected by blind and low 
vision people tend to be blurrier and might show an object partially 
or totally out-of-frame compared with sighted users. 

In particular, this has been noted for computer vision systems for 
blind and low vision users, where data from blind and low vision 
people is scarce and has been treated, and arguably de-valued, as 
‘outliers’ compared to sighted users [20, 41]. Hence, there have been 
calls to include disabled people more extensively in the creation of 
AI technologies, to design with and not for – and to be true to the 
credo of “nothing about us without us” [20, 41, 53, 56]. It is hence 
critical to include people with disabilities in data collection that 
underlies ML innovation. 

The Incluset database [29], an online repository of datasets specif-
ically curated for driving ML innovation in accessibility, has been 
released to address this challenge, bringing the broad diversity of 
datasets collected from persons with disabilities to researchers and 
practitioners. Datasets from people with disabilities however tend 
to be small, making it difficult to innovate in machine learning and 
hence, to engage the machine learning research community in the 
innovation process. This literature has informed our view that it is 
critical to tackle the creation of large disability-first datasets. 

2.2 Datasets for Teachable Object Recognisers 
Teachable object recognisers [30, 37] provide a way for people to 
“teach” an AI system about a new object that they may want to 
identify, by providing training examples themselves. This approach 
could potentially address many of the short-comings of generic 
object recognition for users as new objects can be added quickly 
and as needed. Achieving this vision, however, requires innovation 
in few-shot ML techniques [13, 18, 55, 61] that are optimised to 
work on small amounts of real-world data from people who are 
blind and low vision. 

Existing few-shot learning datasets (and benchmarks) have led 
to valuable ML research insights; accuracy on existing benchmark 
datasets is often very high (e.g., >80% on MiniImagenet’s 5-object 
classification task [55]). However, these benchmarks present overly 
simplistic tasks [35, 45, 55] or ones with low ecological validity 
[54], rendering trained models not appropriate for deployment in 
the real-world. Hence, further ML innovation is required to make 
these techniques useful to blind and low vision users, which in turn 
necessitates an appropriate dataset for further research. 

A way forward would be to turn to existing datasets containing 
objects collected from blind and low vison people. VizWiz is the 
largest dataset containing images from people who are blind and 
low vision [8]. Containing 39,181 images, this dataset is derived 
from a visual question-answering app that crowdsourced answers 
to questions about photographs submitted by blind and low vision 
users. A subset of these images was curated and annotated to pro-
duce the VizWiz dataset [22]. However, VizWiz is not appropriate 
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for few-shot learning techniques which require a small number of 
examples per objects. 

Standing in the way of collecting suitable datasets for teachable 
object recognisers involving the blind and low vision community 
are challenges around quality and privacy of the data. In terms of 
quality of the data, existing research developing teachable object 
recognisers with blind and low vision collectors [28] shows that one 
of the main reasons for performance degradation is the absence of 
the object of interest from the training examples due to challenges 
in photo-taking by people who are blind or have low vision [4, 
37]. Researchers have described many of the challenges that blind 
people encounter while taking photos [1, 2, 6, 24, 27, 58]. Examining 
thousands of photos uploaded by blind and low vision users to 
the visual question-answering service VizWiz [10] and a Flicker 
group for blind users [1], researchers have identified problems in 
photo quality that were particular to these users, including blur, 
lighting, composition, framing and user’s hand obscuring the object 
of interest. To manage some of these issues, researchers and blind 
photographers have adopted strategies including: 1) guiding blind 
and low vision users through audio feedback so that objects stay 
in frame [4, 37], 2) estimating the general location of the target, 
positioning the camera close to the target and backing up, and 3) 
taking multiple shots in the hope that some will be good [1, 27]. 
These are strategies drawn upon in the procedure presented in this 
paper. 

Another significant challenge encountered by researchers are 
privacy issues. Many of the questions asked by users of the VizWiz 
app relate to intrinsically private information, e.g., a photo of a pre-
scription bottle asking what the drug is, or a selfie asking about the 
colour of a shirt. Datasets of images taken by blind photographers 
are particularly at risk for privacy issues because they may not be 
aware of everything that is captured in a photo, such as the license 
plate on a car. A second dataset, VizWiz-Priv [21], was created for 
understanding the presence and purpose of private information 
in images taken by VizWiz users. This work has prompted us to 
think deeply about the approach to privacy in the procedure we 
developed. 

To the best of our knowledge, no realistic dataset for teachable 
object recognisers has been collected by the blind and low vision 
community. This motivated the collection of the ORBIT dataset. We 
report on our experiences with collecting this dataset in this paper. 

3 AN INITIAL PROCEDURE: INVOLVING 
BLIND AND LOW VISION PEOPLE AS DATA 
COLLECTORS 

In taking a disability-first approach to collecting a dataset for devel-
oping teachable object recognisers, thought is needed in addressing 
the tension between inclusion and the work placed on people with 
disabilities to be included. The multi-disciplinary team covering 
HCI, accessibility, and machine learning aimed to craft a procedure 
for data collectors that sought a careful balance between the struc-
ture and fidelity of data required for machine learning innovation 
and the demands put on data collectors. We first articulate a set of 
key constraints followed by their exploration in a pilot study. We 
finish this section by detailing the initial procedure developed. 

3.1 Key Constraints 
3.1.1 Supporting Good Quality Data Capture. Machine learning 
datasets require good quality images to build models that achieve 
reasonable recognition accuracy. Such well-framed, well-lit, stable 
photographs can be difficult for a data collector who is blind or 
low vision to confidently provide without sighted assistance [1, 2, 
6, 24, 27, 58]. Another approach is to use video. Video increases 
both the number of images that are collected as it is simply a series 
of images, and also the chance that the object will be in frame at 
some point. Superfluous frames can be discarded [31, 60]. Moreover, 
models can also learn from the temporal information in a video, 
e.g., an object’s 3D structure. Despite these advantages however, 
to our knowledge, there has not been any research into how blind 
and low vision users take or could be guided to collect videos. 

Object recognition datasets are often crowdsourced from sighted 
contributors using their own devices and there is usually no consid-
eration given to accessibility. For blind and low vision contributors, 
however, the data collection infrastructure needs to be accessible. 
This means that platform-specific applications with their respec-
tive accessibility functions may need to be developed for a data 
contribution infrastructure that is fit for purpose. 

3.1.2 What data to collect? What objects: To be robust, a dataset 
should include a diversity of objects. To serve people who are blind 
and low vision, it should contain objects relevant to this community 
which are currently absent from most object recognition datasets. 
Directly involving the community as data collectors should ensure 
that relevant objects are captured. Yet, it is not without work for 
the data collectors to imagine the possibilities and potential scope, 
in terms of variety and types of objects that could be of interest. 
Data collectors may require support in ideating what objects might 
be of interest. 
For example, will it be possible to distinguish between my keys and 
my partner’s set of keys? Will it be able to identify my bus stop? 
Will it work for spotting whether bread is mouldy? Will it be able 
to locate a friend’s car? The more variety that is encouraged, the 
more diverse the dataset, but the more complex the instructions for 
collecting good quality data. 

How Many Objects: Realistically, a teachable object recogniser 
needs to be able to differentiate between multiple objects. To ensure 
the developed machine learning algorithms are robust, the dataset 
should comprise a minimum of a handful of objects per user, other-
wise, the ML problem could become trivial (e.g., with 2 objects the 
recogniser has a 50% chance of being correct) and the model might 
not generalise well to more objects. This significantly increases the 
effort of the data contribution required from any single collector, as 
compared to generic crowdsourced datasets. As such, more thought 
is needed about how to support as well as incentivise participation. 

What Examples: For a standard classification task, a dataset of 
labelled data is typically split into a training and a testing set to 
evaluate its ability to generalise. With teachable object recognisers, 
however, we need to explicitly capture training examples of the 
object on its own to “register” an object and then collect testing 
examples in realistic situations to test recognition ability in a scene. 
Understanding this distinction may be a challenge for data collec-
tors not well-versed in how AI systems work. Moreover, machine 
learning models need to be trained with diverse data that captures 
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the object from different angles, with different backgrounds, and 
under varying light conditions. Otherwise, there is a risk that the 
model learns spurious correlations between the object and features 
frequently appearing with it, such as a common background. This 
requires extra attention and effort on the part of the data collector. 

How Many Examples: Current low-shot systems require between 
5–10 examples to work well when used in the real-world [18, 44, 
49, 55]. This however also increases the need for good quality data 
which can be difficult for blind and low vision people. 

3.2 Initializing the key constraints: a pilot 
study 

To gain understanding of the above key constraints from the per-
spective of potential data collectors who are blind or low vision, 
we conducted a pilot study with eight blind and low vision par-
ticipants (5 male, 3 female) in their homes. During a 90-minute 
visit, we asked participants to use their phone to record videos of 
five objects that they had been primed to think about before the 
research visit. These videos included two training and three testing 
videos per object using different filming techniques. The videos 
were sent to us and the visits were audio and video recorded for 
analysis. 

A significant focus of the pilot was to investigate how to guide 
participants to confidently take good quality videos. Two filming 
techniques for training videos were explored: 1) zoom-out, and 
2) rotate. For the zoom-out technique, participants were asked 
to start by recording the object from a very close-up view and 
slowly pulling the camera away from the object while videoing. 
In the rotate technique, they were asked to record a video so that 
different sides of the object were visible to the camera. The zoom-
out technique was motivated by helping the user frame the object 
well. The rotate technique was intended to increase the chance of 
capturing discriminative parts of the object. For the testing videos, 
participants did not have to follow a specific filming technique. 

3.2.1 Supporting Data Quality. We did not see any blurry or badly 
lit objects in the videos. This is perhaps an artefact of the quality of 
cameras available in iOS devices or the influence of the researcher. 
We found that both filming techniques were equally well suited to 
ensure objects were in frame; however, smaller size objects were 
generally better framed than medium to large ones. 

The zoom-out technique was easy to apply and resulted in a good 
framing of the object. Pilot participants adapted the rotate technique 
depending on the size of the object. For most small objects, users 
recorded the video with one hand while rotating the object with the 
other, either by holding and manipulating the object at the same 
time, or by placing the object on a surface, and then rotating it 
only when needed. This latter technique provided less occlusion 
of hands in the data. Pilot participants often placed larger objects, 
such as a rucksack, on a surface and walked around the object while 
recording. 

Some participants chose to use a new filming technique for test-
ing videos, in which they panned the camera across a scene. When 
doing this, participants often panned the camera until the object 
was in frame and then kept the camera still for a few seconds or 
zoomed-in (with optical zoom) to get a closer view. This phenom-
enon was likely because participants were asked to position the 

object themselves and hence knew its location a priori. However, 
this resulted in videos always ending with the target object in frame 
which could introduce an unintended bias into a machine learning 
model; models may learn, for example, that objects only appear in 
the last few seconds of videos. 

We integrated the following learnings from the pilot into our 
procedure: 

• For the testing videos, we combined the zoom-out and rotate 
techniques into a ‘zoom-rotate’ technique asking partici-
pants to record the object by first zoom-out, then rotate, and 
then repeat three more times for different sides of the ob-
ject to be visible in the video. We encouraged rotation on a 
surface, rather than in the hand. 

• We developed different filming techniques for small to 
medium sized objects and for large or immovable objects. 

• We changed the instructions for testing videos to encourage 
participants to record a scene with the object and other 
objects around, rather than their object per se. 

3.2.2 What Data to Collect. Participants did not find it challenging 
to think of objects, so we chose to ask for 10 per participant in the 
procedure. Most objects were small/hand-held, for example keys, 
remotes, spectacles, wallets, and inhalers; however, some were 
medium-sized, for example bags, laptops, and canes. Figure 2 shows 
a word cloud of most frequently mentioned objects. Participants 
did not have difficulty distinguishing between training and testing 
filming techniques, so this was encouraging. 

Figure 2: A word cloud showing the objects of interest that 
pilot participants mentioned. The size of the text shows 
the relative frequency. The white cane mentioned most fre-
quently (17 occurrences), closely followed by keys (12 occur-
rences), bag (10), a remote control (9), and headphones (6). 
Less frequent objects were the following: speakers, wallet, 
iPad, airpods, mug, laptop, inhaler, coffee powder and oth-
ers. 

3.3 Initial Data Collection Procedure 
Based on the learnings of the pilot, a data collection procedure 
was developed. It contained two main elements: a data collection 
protocol with a set of user instructions, and an accessible app (Figure 
3) and supporting infrastructure to collect data. These worked in 
concert to support high quality data capture, reducing the burden 
on data collectors as much as possible, and to ensure the privacy 
of data. We tested the accessibility and usability of each of these 
components first through professional accessibility evaluation and 
then numerous iterative engagements with users. 
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3.3.1 Data Collection Protocol. Supporting Data Quality: The data 
collection protocol was presented in a set of user instructions (avail-
able in the supplementary material). These instructions first mo-
tivated the use scenarios of teachable object recognisers within 
the blind and low vision community. This was followed by a brief 
overview of how machine learning works, with a special focus on 
the need for training and testing videos as well as variation in the 
data. The instructions gave a linear progression of what needed to 
be done with considerable detail. Examples were given throughout 
to provide context to data collectors, e.g. when explaining what a 
training video is, we gave the example of the white cane taken in 
different positions and environments - such as when it is folded up, 
when it is leaning against a wall, when it is outside or on the couch 
etc. Since there was significant detail in the instructions, they were 
sent to collectors before they started to collect the data and were 
also available in the help menu of the app. 

Data collectors were given step-by-step instructions to imple-
ment the ‘zoom-rotate’ technique to capture training videos. They 
were asked to keep one hand on the surface next to the object as 
an ‘anchor point’ to aim the camera at the object, then holding 
the phone in the other hand and bringing it as close as possible to 
the object. After starting the recording, they were asked to slowly 
draw the phone away from the object until it reached their body 
at shoulder height, after which they should rotate the object so 
that a different side of it was facing them. Then they should return 
their phone’s position to the anchor hand, repeat this process three 
times, and then stop the recording. 

For testing videos, data collectors were asked to construct a 
realistic ‘scene’ in which the recogniser might be used, for example, 
a surface where they may look for their keys that were moved 
by somebody else. The scene needed to include the objects they 
wanted to film together with at least five other ‘distractor objects’ 
that had not been registered in the recogniser. Data collectors were 
then asked to take testing videos of a scene with two different 
techniques: ‘zoom-out’ and ‘pan’. For ‘zoom-out’, they had to place 
an ‘anchor hand’ in the scene, and then draw their phone slowly 
towards their body, then stop recording. For a ‘pan’ video, we asked 
data collectors to face the scene and to make sure the selected object 
was not directly in front of them. To position the camera to face 
the scene, they could use an anchor hand but they were asked to 
remove it before panning over the scene at shoulder height from 
right to left, by turning their upper body. 

In addition to the instructions, data collectors were supported 
in a number of other ways: 1) a Frequently Asked Questions (FAQ) 
document was available (available in supplementary material); 2) 
data collectors could request a phone call for assistance; 3) weekly 
emails were sent, providing participants with summary stats, en-
couraging them to submit more videos, as well as asking them to 
re-record any videos as necessary; and 4) two online training ses-
sions via video calls were provided. Throughout the data collection 
period, we ensured that participants had a researcher as a personal 
contact point whom they could approach for help. 

Data Requested: Data collectors were asked to select ten objects; 
two of these ten objects were requested to be large or immovable 
objects. They were then asked to take eight videos of each object, 
six “training” videos and two “testing” videos. For the six “training” 
videos, collectors were asked to record the object in isolation using 

the ‘zoom-rotate’ technique. Each of these training videos required 
a different background with variation in lighting also recommended. 
They were also asked to record two types of “testing” videos with 
the object situated in a scene, one each using the ‘zoom-out’ and 
‘pan’ methods. Altogether, each collector should collect 80 videos. 

3.3.2 Accessible Data Collection Infrastructure. We developed and 
distributed a fully accessible data collection iOS app for iPhone and 
iPad (Figure 3) so data collectors could use their own devices in their 
everyday environment to capture and label videos of objects. The 
app has three main screens. The Things screen (Figure 3.a) allowed 
the data collector to 1) add a new thing and 2) list the objects has 
chosen to video and the videos already taken for each object. By 
selecting a thing or adding a new object, the data collector was taken 
to the record and review screen. On the Record and Review screen 
(Figure 3.b), the collectors could choose whether they wanted to 
add a training, test-zoom or test-pan video and then add videos of 
the selected type to the collection. Once a video had been recorded, 
this screen also allowed the collector to review the collection of 
videos (Figure 3.c) in order, for example, to re-record a video that 
the collector was not happy with or that did not pass our validation 
criteria (as marked by a researcher) and could not be added to the 
dataset. The app supported data collection in a number of ways. 
First, it allowed the data collectors to organise the data collection 
process, providing structure for the various objects and types of 
videos that needed to be collected. Both the user interface and the 
interaction flow supported collectors in creating the range of videos 
required. Second, it provided audio feedback during recording. A 
tic sound was played every five seconds to give an indication of 
when the object should be rotated and a double tic and vibration to 
indicate when a video should be stopped. To prevent inadvertent 
long videos, recordings were automatically ended after two minutes. 

Edit Things CD 

Add a new thing 

Ada's Coffee Cu + 

Your things 

Lifemax talking watch T3 Z1 P1 

LG remote control TO Z1 P1 

White guide cane T3 Z1 P1 

Rucksack T2 Z1 PO 

House keys T1 zO PO 

train train 

G 9/6/20, 10:48 PM Re-record video 

• 
0 Uploaded 

0 Not yet checked 

® Not yet published 

B 
"' Delete video 

ba dc

Figure 3: The data collection app: (a) the main ‘Things’ 
screen, (b) a ‘Thing’ screen adding a recording, (c) a ‘Thing’ 
screen after some recording activity, (d) the same ‘thing’ 
screen marked up with the adapted information hierarchy 
and touch-targets of the accessibility interface. 

Eligible collectors were sent an accessible PDF document giving 
them details about the study, instructions for how to collect and 
label the videos using the collection app, and the App Store link 
to install the app. The document included information about data 
ownership, security and privacy and what would happen to the data 
beyond data collection, including how to withdraw participation 
and delete data. It was made clear that the resulting anonymised 
data would be released publicly in an open-source dataset. 
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Informed consent was obtained via the app and a record was 
created in our server infrastructure. Supporting privacy of data 
collectors was a key consideration in the design of the infrastructure. 
Audio data and meta-data from videos was never collected. We 
developed a validation process for videos submitted to the server via 
the app. Videos were individually checked by a researcher to ensure 
that: 1) they did not contain any Personal Identifiable information 
(PII) in the video or object name; 2) the video or the object name 
were not inappropriate or offensive and 3) the object was in-frame 
at least some of the time. The only bar in terms of data quality was 
that the object had to be visible in-frame at some point in the video; 
this was to encourage ML researchers to make their models robust 
to realistic data, an important long-term contribution to computer 
vision apps for the blind and low vision community. All the videos 
that did not meet the validation criteria above were considered not 
suitable for the dataset and were automatically deleted from the 
server. For example, videos that had a participant’s first name in 
the label, pictures of people in the background, or names or QR 
codes on cards were sent back to the data collector for re-recording. 
The app helped users track the status of their videos and whether 
they had been accepted into the dataset. 

The code for the data collection app and server infrastructure is 
available for download at https://github.com/orbit-a11y. 

4 PROCEDURE VALIDATION AND 
EVOLUTION 

In this section we report on the empirical validation of this initial 
procedure through two phases of data collection. For each phase, 
we detail the implementation of the procedure and assess the key 
learnings which led to further evolutions. We show the main dif-
ferences between phases in Table 1. In addition to a description 
of the data and our reflections on the experience, we used small 
machine learning-driven experiments to motivate evolutions to the 
procedure. 

4.1 Phase 1 
4.1.1 Recruitment. The initial procedure was used during the pe-
riod between beginning of May and mid-July 2020. UK-based data 
collectors were recruited through advertising on social media, per-
sonal contacts, a charity for blind and low vision children and 
young adults, and a further education college for blind students. 
Later efforts were supported by a technical blog post by Microsoft 
research that highlighted the project, and an email to UK-based 
users of an assistive technology provided by the same company. 
Each collector who completed the data collection was paid £50 in 
Amazon vouchers. Finally, we introduced snowball recruitment in 
which existing data collectors recruited their personal contacts to 
participate. For every referred data collector who completed the 
study, referrers received an additional incentive of £10 in Amazon 
vouchers. Recruitment was more of a challenge than we expected 
given the money offered, resulting in 48 data collectors making 
contributions (goal of 100). We were surprised that our contributors 
seemed to be older, tech-savvy users of existing apps that incorpo-
rate AI for accessibility. We surmise that these collectors already 
understood the benefits of collecting data for drive ML innovation. 
This insight prompted us to stress the direct benefits of developing 

AI for accessibility for the community instead of individual contrib-
utors in Phase 2. We reinforced this focus on the wider benefit to 
the community by replacing the direct payment to participants with 
making donations to selected community organisations. We also 
saw a significant drop-out of potential data collectors: 64 people 
dropped out after initially showing interest in participating, 43 did 
not continue after receiving the user instructions, and 21 down-
loaded the app but did not take any recordings after downloading 
the app. The complexity of the instructions might have contributed 
to this high level of drop-out. The instructions explained the record-
ing techniques in great detail, due to many data collectors being 
unfamiliar with taking videos. However, data collectors mentioned 
that they spent significant time studying the instructions but were 
still unable to remember all the information, e.g., the different tech-
niques to record training videos depending on whether the object 
was small or large. As a result, we created a more generic set of 
instructions for Phase 2 (available in supplementary material) that 
stressed capturing different angles of objects, rather than explicitly 
defining steps to follow. 

4.1.2 Protocol. While we collected 3448 videos (2453 training, 501 
test-pan, 494 test-zoom) for 390 objects, many collectors struggled 
to complete the data collection. Despite the findings in the pilot, 
data collectors reported that they struggled to think of 10 unique 
objects. On average, data collectors contributed eight objects each 
(Figure 4a). Data collectors also struggled to collect all the examples 
required for each object. At a minimum, we required six training 
videos, one test-zoom and one test-pan for a ‘complete’ object. 
Only two data collectors submitted 10 complete objects, with 11 
submitting eight or more, and 17 collectors submitting none (Figure 
4b). 

We used a machine learning-driven analysis to assess whether 
we could ease the burden on data collectors without compromising 
model generalisability. We first considered the number of objects to 
be collected. A state-of-the-art few-shot model [44] was trained on 
1) the dataset as it was with up to 11 objects per user, 2) a capped 
version of the dataset by artificially lowering the number of objects 
per user to five. In line with typical accuracies of this model on 
other datasets, training and testing without caps gave an accuracy 
of 46.32%, whereas capping the training objects to five per user 
gave a test accuracy of 41.18% on the uncapped dataset. We believe 
this drop of 5% accuracy is relatively small and can possibly be 
reduced further in a number of ways such as training with varying 
number of objects or carefully merging users’ data. We therefore 
reduced the required number of objects to five in Phase 2 of the 
data collection. 

We then considered whether we could reduce the number of 
videos to be collected per object, and specifically training videos. 
We analysed the effect of increasing numbers of training videos 
per object on test video accuracy (Table 2), using the same machine 
learning setup. We saw that accuracy was highest for four training 
videos and the gain in accuracy surprisingly flattened off as the 
number of training videos increased. We decided that we were able 
to reduce the number of training videos to five without affecting 
the recognition abilities of the recogniser. Five also aligned with 
the number of objects data collectors were asked to collect, thus 
making it more memorable. 

https://github.com/orbit-a11y
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Table 1: Main differences between Phase 1 and Phase 2 

Phase 1 Phase 2 

Number of objects 10 with at least 2 large/immovable 5 
Number of testing videos 1 zoom-out, 1 pan 2 zoom-out 
Number of training videos 6 rotate-zoom 5 rotate-zoom 
Incentives £50 Amazon voucher £25 donation to charity 
Collectors UK-based Global 
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Figure 4: a) Number of objects collected per collector b) Number of complete objects (6 training, 1 test-zoom, and 1 test-pan) 
per collector. 

Table 2: Effect of number of training videos per object on 
test accuracy - more training videos improves the ability to 
recognise the object in new environments. 

# training videos per object Test accuracy Gain 

1 36.21 -
2 43.57 +7.4 
4 46.61 cap +2.8 
6 46.32 -0.3 

We also re-visited the types of objects we asked data collectors to 
record. The most common objects submitted were keys (19), guide 
cane (11), wallet (9), AirPods (8), front door (7), headphones (7), 
mug (6), sunglasses (6), but we noted a long tail of objects that were 
unique to individuals. The data collected covered objects of different 
sizes, ranging from wallets and keys to house doors and a friend’s 
car. Most data collectors, however, did not add the requested large 
objects, contributing on average one large object with just under 
half of users contributing none. Although having diverse objects 
naturally future-proofs the dataset, it comes at a cost of increased 
complexity of the user instructions. We therefore made the decision 
to remove the specific request for large or immovable objects. 

Finally, we considered how we could reduce the number of video 
techniques to further reduce the complexity of the user instruc-
tions. To explore the relative value of the two types of testing 
videos, we trained a state-of-the-art low-shot model [44] using ei-
ther training/test-zoom videos or using training/test-pan videos. 
Test-zoom videos yielded a recognition accuracy of 46.32%, while 
test-pan videos yielded an accuracy of 27.20%. This drop in accuracy 
can be explained by the absence of the objects in most portions 
of test-pan videos by virtue of collectors panning across a scene; 
thus, the model needs to predict not only what the object is but also 

guess whether the target object is in frame. Resolving this issue 
would require collecting frame annotations offline from sighted 
users, which would come at further time and cost. This analysis 
therefore highlighted that test-zoom videos were the most useful 
to collect also because object predictions would be made per frame 
and test- zoom videos will include more examples of the actual 
object. 

Finally, we observed that 17% of data collectors did not collect any 
testing videos, making the evaluation of a trained model impossible. 
To encourage data collectors to record test-zoom videos, we asked 
them to record these videos before the training videos, in the place 
that they would normally keep the object. This removes the need to 
artificially construct a scene. They could then move to new surfaces 
with no other objects around to record the training videos. While 
we were still asking for two test-zoom videos to be recorded, we 
reduced effort even further by asking them to record them from 
a different angle rather than different location. These recording 
instructions were further supplemented by an online tutorial that 
walked data collectors through the process. 

4.1.3 Accessible Data Collection Infrastructure. We revisited the 
design of the data collection app as well. One important aspect is 
to encourage minimum collection of examples for an object whilst 
discouraging ‘over-collecting’. Over-collecting happened because 
data collectors were worried about data quality and responded by 
taking more or longer videos than necessary. For example, some 
data collectors recorded multiple videos of each object from differ-
ent sides instead of rotating the object in one video. To address this 
challenge, the app was adjusted to highlight when all video slots for 
an object are filled. Another type of ‘over-collecting’ was recording 
very long videos; as a result, we reduced the video cut-off time to 
30 and 20 seconds for training and testing videos respectively. 

We also improved accessibility of the app to support better data 
collection. We provided stronger audio and haptic feedback during 
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recording and we added better VoiceOver markup that read out ap-
propriate recording instructions in the right context. This improved 
the video quality as it helped collectors to collect the data using the 
right technique without the need to refer back to the instructions 
file. 

A major consideration for Phase 2 was also to ensure the pri-
vacy and confidentially of the data. To communicate with anony-
mous collectors, we added a notification feature to the app that 
we used to inform collectors about their progress and the need 
to re-collect data. As mentioned above, a researcher watched all 
submitted videos to remove the small fraction that contained PII, 
no object, or inappropriate content. This validation process was 
time-consuming: on average, one hour was needed to validate 100 
videos. In scaling up, this task should not be underestimated. For 
example, suppose we are aiming for 300 collectors, only a ten-fold 
increase in contributors, each recording five objects, and five train-
ing and two testing videos for each object. This would require more 
than 100 hours of researcher labour to watch and validate all videos, 
or nearly three weeks of full-time researcher work effort. While 
there is some research into detecting PII automatically [19], it is 
currently not robust enough to ensure complete anonymisation. 
We hence employed a contract researcher in Phase 2 for supporting 
this validation process. 

4.2 Phase 2 
4.2.1 Recruitment. Phase 2 data collection was carried out in two 
rounds from mid-October to November 2020 and again in Janu-
ary 2021 in multiple English-speaking countries around the world. 
In the first round, three podcasts aimed at blind and low vision 
technology users were created in addition to advertisement on so-
cial media. For each collector that completed their videos, a £25 
donation was offered to one of five charities of their choice that 
supports blind and low vision communities. In the second round, we 
worked in close collaboration with one charity’s prepare-for-work 
programme. The charity led recruitment and communication with 
the data collectors as well as provided technical support as needed. 
Each data collector who completed was given the equivalent of £25 
by the charity. 

New community engagement strategies were also tried in this 
phase. For round 1, we had added a pre-filmed filming instruction tu-
torial, detailed online instructions, and app notifications to simplify 
mass communication between the research team and data collectors. 
Round 2 was more interactive and involved more direct contact. To 
help collectors understand the purpose of the data collection, we 
offered an optional one-hour online interactive lecture by a field 
leader entitled: “Artificial Intelligence Basics: Understanding the 
tech in your pocket”. The lecture was for background knowledge 
and participants were not required to collect data. Additionally, 
similar to the training sessions provided in Phase 1 to help par-
ticipants complete their videos, we carried out two “Let’s get it 
done” sessions where data collectors had the chance to complete 
their videos on a live video call with researchers present. However, 
participation in both sessions was relatively low. These touchpoints 
were an important part in engaging a community that may not 
understand why datasets are needed to drive the tools that many 
already have in their pockets. 

Despite a significant focus on community engagement, recruit-
ment remained a struggle with just 52 contributing data collectors 
(goal of 125, revised down from 300). In the first round, we got sev-
eral complaints from data collectors that they wanted to get paid 
directly for their work. Yet, even when paid directly, the numbers 
were not as high as the charity had expected. 

4.2.2 Protocol. In total, we received 1380 videos (965 training, 415 
testing) for 271 objects. This included 423 videos of 96 objects by 21 
people in round 1 and 957 videos of 175 objects from 31 people in 
round 2. In both rounds, we saw significant drop- out of potential 
data collectors: 18 people dropped out after downloading the app 
but without taking any recordings in round 1 and 14 people in round 
2. The number of drop-outs was lower compared to Phase 1, which 
shows that the simplified version of the instructions might have 
helped in addressing this issue. Interestingly, while the number of 
collectors was smaller in round 2, the strategies for engagement 
better supported collectors in completing data collection. 

Our efforts to engage users and support them to gather good 
quality data also paid off. The most common objects in Phase 2 
were: keys (16), wallet (9), remote control (7), pen (5), sunglasses 
(4) and white cane (4). We also had some success in driving new 
types of objects to be collected. A few unexpected objects were 
collected this time, including a face mask, a guide dog, and dog 
waste, likely prompted by our additional efforts to help collectors 
think of different objects. Even though the new set of instructions 
was more generic rather than providing every detail and there was 
no specific request to record large or immovable objects, this did 
not stop users from collecting videos of a bus stop, a patio gate, a car 
as well as home appliance such as a washing machine, a fridge and 
a dryer. In total, the dataset included 21 large objects collected by 
nine users in Phase 2 while the remaining 43 users did not submit 
any videos of large objects. However, some of the data submitted 
were shot in very low lighting conditions, at night, and we needed 
to ask collectors to retake the video. 

The fact that most of the data collectors completed their videos 
as well as the low participation in the additional training sessions 
shows that the new simplified version of the user instructions 
helped collectors to complete their videos. We also observed that 
collectors submitted both testing and training videos this time. This 
shows that the strategy of asking them to take the testing videos 
first, and in the place that they would normally keep the objects, 
was helpful. 

4.2.3 Accessible Data Collection Infrastructure. We still faced sig-
nificant challenges in getting the app to work well with some collec-
tors, even with technical support provided by the charity in round 
2. For example, we had unexplained crashes, audio problems and 
data which did not upload. These problems proved very difficult 
to troubleshoot and resolve because of the diversity of devices and 
settings, and lack of direct access to collectors. 

For faster validation of the videos, we hired a contract researcher 
who was dedicated only to this job. This helped with over-collecting 
videos since there were no delays on notifying data collectors about 
the quality of their videos. In order to ‘rescue’ some of the videos 
that contained PII, we trimmed some of the videos to remove the PII. 
This was time consuming and was feasible only for a few videos, 
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for example, a video of a car where the licence plate was visible 
only at the start and end of the video. 

5 DISCUSSION 
There is significant scope for AI innovation to open up new possibil-
ities for people with disabilities to access the world. However, such 
innovation requires large datasets that reflect the data of the peo-
ple with disabilities. In this paper, we presented the development 
of a procedure, comprising a protocol and data collection infras-
tructure, that enables data collectors who are blind or low vision 
to contribute to a dataset useful for developing teachable object 
recognisers. We validated this procedure through two phases of 
data collection. Throughout the creation of a disability-first dataset, 
we reflected upon the tension of including people with disabilities 
as data collectors and the work that is consequently required of 
them. 

In this discussion, we consider the broader implications of this 
work for others collecting disability-first datasets for AI innovation. 
We highlight eight orienting questions for researchers that address 
the engagement, data collection procedures, and accessible data 
collection infrastructure. 

5.1 Engaging Data Collectors with Disabilities 
• Do you have adequate resources for supporting data collec-
tion? 

There are many perspectives on how data collectors could be or 
should be incentivised or compensated for their time. One could 
compare data collection to crowd work and consider the payment 
rates in that context [23]. However, even when accounting for the 
implicit efforts of data collection (e.g. reading training materials), 
in our case some people communicated with us that they expected 
higher amounts. The amount varied by location, depending on what 
others had offered previously, a problem well-known in anthropol-
ogy [19, 50]. An alternative approach would be to consider implicit 
incentives to motivate data collectors beyond monetary rewards 
[32]. In our work, we worked hard to appeal to intrinsic motivations 
around learning new skills and helping the community, making it 
very clear that there would be a tangible product outcome. Gamifi-
cation is another approach, as used in [11] to capture sign language 
data. The data needed for few-shot learning, however, does not eas-
ily lend itself to gamified elements that are based on quantity. Nor 
could we provide a prototype service as state-of-few-shot learning 
algorithms are not accurate or computationally efficient enough 
to achieve a teachable object recognisers at the time of data col-
lection. It can be seen as a “chicken or egg” problem for an initial 
dataset that allows for more contextualised data collection in the 
context of machine teaching applications. Other approaches are 
to use non-disabled crowd-workers as in [26] to build an initial 
base for applications relevant to the disability community. This is 
in opposition to initial views that motivated this work to take a 
disability-first perspective. In our experiences, the nature, amount 
and recipients of incentives are one of the key points to consider. 
We suggest that researchers consider implications on resources 
available within the project early on to achieve successful data 
collection. 

• What strategies will you use to cultivate informed contribu-
tors? 

We found that collecting a dataset for ML works best when col-
lectors have a basic understanding of how ML works. This helps 
them focus on certain aspects of the data that they collect which 
are crucial to being able to drive ML innovation. In our case, for 
example, participants often omitted test videos for objects which 
meant that we could not evaluate the models we developed, and 
thus rendered all the training videos that the data collector had 
provided useless. To counteract this, we needed to spend more ef-
fort on educating our collectors, through giving information about 
what ML is and how it works in written instructions and interactive 
lectures. It may also be important to cultivate an understanding of 
any potential ethical issues that might be present in collecting the 
data as well [5]; we endeavoured to highlight the removal of any 
PII prior to the dataset release. There are currently some efforts to 
make AI transparent to a wider audience [34, 40], as well as educate 
end-users about AI [17, 36, 52]. However, there is little research to 
investigate how to make AI for accessibility transparent to people 
with disabilities [3] and to our knowledge there are no curricula for 
teaching about AI for accessibility to the disabled community. Your 
project will need to consider how to overcome these challenges and 
educate your target community. 

• Are you inspiring your participant community to think about 
their role in ML innovation? 

Creating a dataset to support specific applications, while an im-
portant part of engaging a community, is very challenging. As 
Yang et al. [59] discuss, it is difficult to specify an AI experience 
in advance of having a working prototype trained on data. In our 
project, we tried to motivate the data collection by describing how 
an app that embeds a teachable object recogniser might be used. 
However, these efforts could be improved to engage the target 
community, either by supplying non-working ‘demo’ versions, or 
providing initial prototypes that demonstrate its use, even if they 
are not robust for everyday use [43]. Another option is to release 
experimental ‘lab’ areas in existing apps that can employ ‘donate to 
science’ approaches. A different approach would be to give space 
for building experiences alongside users. This could be achieved 
through co-designing [14, 47, 57] with the communities and inte-
grating multiple iterations of dataset collection into prototypes. 
These choices will play a crucial role in inspiring your participant 
community. 

With so many decisions and demands to get data suitable for ML 
research, it is easy to lose sight of the important role that disability-
first dataset collection efforts play in engaging a target community. 
This may be the first time a person with disability experiences 
AI and what it may have to offer them. What is offered in return 
may be critical to the relationship that participants form with AI. 
Moreover, the way recruitment, task, and support are set up will 
speak strongly about the power relationship between research and 
disability communities [7]. Any work done by collectors might 
be seen to go into a ‘dark hole’, without seeing a direct benefit in 
the future and not connecting how individual work shapes a ML 
innovation for the community. ‘Drive-by’ data collection is likely 
to have a very negative impact on the relationship with a disability 
community. Including researchers from your disabled community 
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and ensuring that the community receives useful technology in 
return for its effort are potential approaches to this question. 

5.2 Data Collection Procedures 
• Are you striking the right balance between ML needs and 
demands on collectors? 

A key contribution of the work presented here was a switch from 
images to videos. While much of the ML work for teachable object 
recognition is still done on images, videos give people who are 
blind or low vision more opportunities to capture good images of an 
object. They also enrich the data by providing temporal information 
that could be used to make object recognition from real-world data 
more robust. We encourage researchers to radically rethink the 
data collection needs to suit collectors. 

To do so requires close collaboration between HCI, accessibil-
ity and ML researchers. It might feel that the considerations that 
enable robust ML development are relatively fixed, and that data 
collectors simply need to ‘get on with it’. However, as our work 
showed, probing these touch points in a collaborative setting can 
help prioritise the most critical aspects of the data collection. In 
our work, ML driven data evaluation at intermediate points in the 
process helped us better balance data needs with demands on the 
collectors. For example, we were able to reduce the number of ob-
jects, while keeping the number of training videos more or less the 
same. With the help of HCI and accessibility experts, we were also 
able to situate the ML needs in the protocol and supporting infras-
tructure. We believe that inter-disciplinary teams are necessary to 
drive ML innovation in disability communities. 

• How can ML support your community in data collection? 
While collecting datasets is often about the development of new 
ML techniques, existing techniques may also be useful in enabling 
participation. In the object recognition domain, there is some work 
that is using ML models to help users take good images, for example 
by indicating whether any object is detected at all or where it is 
located in the current frame, or using the presence of hands as 
an indication of where the object is located [4, 9, 37]. This work 
could be extended to videos, also perhaps indicating low lighting 
conditions or the possible presence of PII. What is important is to 
consider in this question is how the burden on collectors can be 
further eased. 

5.3 Accessible Data Collection Infrastructure 
• How closely are the collection procedure and the infrastruc-
ture entwined? 

As part of our project, we are sharing the code of our data collection 
infrastructure (https://github.com/orbit-a11y) so other researchers 
can extend the data collection we started. However, the app is 
tightly bound to the procedure. While we attempted in Phase 1 to 
build a relatively generic app to record videos of objects, we came 
away from that in Phase 2 as we found that collectors were better 
supported by specifying the number of videos needed, and giving 
recording instructions in context. Embedding further support, for 
example, object in-frame detection would entwine the app even 
more with our use case. This of course prevents reuse of the app, 
and significant effort would have to be expended to create the right 

infrastructure for collecting other data. This means a careful balance 
has to be struck between development effort of the supporting 
infrastructure and intended re-use between data collection projects. 

• How do you support collectors across the world? 
When collecting data in a disability-first way, accessibility of the 
data collection infrastructure becomes very important. In order to 
support disabled collectors best, it is often necessary to make use of 
platform-specific accessibility functions. In our project, we designed 
for iOS 13.2 devices such as iPhones and iPads to provide access 
through VoiceOver, and made use of Apple Accessibility Guidelines 
in designing the app experience. Because we collected videos, we 
also required significant storage space for collected data, and a 
stable Internet connection. All these aspects meant that collectors 
had to own or have access to high-spec, expensive devices. However, 
this cuts out a large swathe of collectors who use other platforms 
(e.g. Android), lower-spec devices or do not have broadband. This 
then can lead to further marginalisation of potential collectors, due 
to their socio-economic status, age, technology-affinity, or their 
location. Reflecting on this question will need to address how to 
extend the reach of the infrastructure to people beyond WEIRD 
(Western, Educated, Industrialised, Rich, Democratic) societies [25]. 
In turn, this will also affect decisions to support cultural adaptations 
of the data collection, for example, translation of components or 
markup for collectors in non-English speaking countries. 

• What strategies will be used to ensure privacy and confiden-
tiality? 

Considerable thought has to be given to ethical issues in a 
disability-first data collection, especially if the data is to be made 
publicly available to drive ML innovation on a large scale. Our 
experiences and that of the VizWiz project [21] show that data 
might be frequently intrinsically private, such as bank cards, or that 
personally identifying information (PII) might also slip in inadver-
tently, such as ‘selfies’ from reflections on shiny surfaces. We have 
tried to address this through educating collectors about PII and a 
researcher manually checking all videos. However, as we discussed, 
a manual process can considerably escalate the effort and resource 
required during a collection process and might also necessitate a 
feedback loop for collectors to re-collect data. It would be much 
better if the detection and elimination of PII could be automated, 
while preserving the data already collected. For example, this could 
extend to blurring of addresses or car license plates while still us-
ing the remainder of the image as data. This is an active research 
concern that is necessary to drive disability-first ML innovation. 

6 CONCLUSION 
AI for accessibility is a rapidly developing space, and dataset collec-
tion will be essential to creating many novel and useful applications 
for disability communities. While it is critical to ensure that dis-
abled people are at the centre of the ML innovation process, this 
is also effortful for disabled data collectors. In this paper, we have 
presented key constraints that needed to be balanced when collect-
ing a disability-first dataset to innovate in AI for accessibility. Of 
particular importance were: 

• engaging with and supporting target communities, 
• ensuring the quality of the data collected, 

https://github.com/orbit-a11y


Disability-first Dataset Creation ASSETS ’21, October 18–22, 2021, Virtual Event, USA 

• balancing the usefulness versus the effort of data to be col-
lected, 

• providing a suitable data collection infrastructure. 
We presented and evaluated a procedure for collecting data to 

develop teachable object recognisers from blind and low vision 
collectors. We found that: 

• How to engage and support blind and low vison collectors 
needs to be carefully considered and adequately resourced. 
We found that recruitment strategies need to be adapted to 
increase community involvement, and that extra effort has 
to be spent on supporting collectors and addressing privacy 
considerations. 

• We proposed a switch from images to videos to support col-
lectors who are blind or low vision. Good quality examples 
can be ensured by developing clear and simple filming in-
structions that use hands as anchor points. We developed 
a rotate-zoom technique for training videos and a test-pan 
and test-zoom technique for testing videos. 

• Thought needs to be given to the number and kinds of objects 
and examples to be collected to balance the effort required 
by collectors. We ran a number of ML-driven data analyses 
to help us to refine our procedure. 

• We developed a data collection infrastructure that supported 
the collection efforts of a large number of people who are 
blind and low vision across the English-speaking world. 

We presented eight orienting questions to other researchers 
creating datasets for AI for accessibility to help them reflect on the 
needs of their participant community in these dataset collection 
efforts. Our work, which resulted in a disability-first dataset [38] is 
a significant step in contributing to driving ML innovation for the 
disabled community [39]. 
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