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Abstract. One of the main goals in realistic rendering is to generate images that are
indistinguishable from photographs – but how do observers decide whether an image is
photographic or computer-generated?  If this perceptual process were understood, then
rendering algorithms could be developed to directly target these cues.  In this paper we
introduce an experimental method for measuring the perception of visual realism in images,
and present the results of a series of controlled human subject experiments.  These
experiments cover the following visual factors:  shadow softness, surface smoothness,
number of light sources, number of objects, and variety of object shapes.  This technique
can be used to either affirm or cast into doubt common assumptions about realistic
rendering.  The experiments can be performed using either photographs or computer-
generated images.  This work provides a first step towards objectively understanding why
some images are perceived as photographs, while others as computer graphics.

1 INTRODUCTION
One of the goals in computer graphics research since its inception has been to generate

computer images indistinguishable from photographs.  The most realistic results emerge from
special effects studios, which typically forego physically-accurate rendering methods, relying
instead on the visual skills of their artists.  These artists have a keen understanding of how an
image must look for it to be perceived as real.  They operate in a continual loop of generating
images, evaluating them for realism, and then making adjustments as necessary.  However, the
average practitioner in computer graphics does not precisely understand what makes some images
look photographic and others computer-generated, and is unable to create fully-realistic imagery.

If the perceptual criteria by which people
evaluate whether an image is real were
understood, then one could build new rendering
algorithms to directly target the necessary visual
cues.  Furthermore, one could optimize the
rendering budget towards those visual factors
that have the greatest impact, without wasting
effort on elements that will not noticeably
improve the realism of an image.

In this paper we demonstrate that the
perception of visual realism in images can be
studied using techniques from experimental
psychology.  We present an experimental
method that directly asks participants whether an
image is real (photographic) or not real (CG).
We conducted experiments to explore several
visual factors, including shadow softness, surface smoothness, number of objects, variety of object
shapes, and number of light sources.  The resulting data confirmed some common assumptions
about realistic rendering, and contradicted others.  We found that while shadow softness and
surface smoothness played a significant role in determining an image’s perceived realism,
increasing the number of light sources did not.  Also, increasing the number of objects in a scene,
or the variety of object shapes, did not increase an image’s likelihood to be perceived as real /
photographic. Our method can be conducted using exclusively photographs, or using exclusively
computer-generated images.  We ran duplicate experiments using both photographs and computer-
generated images, with similar and consistent results between the two.

Figure 1.  Is this a photograph or CG?  What
visual factors affect your decision?



2 PREVIOUS WORK
There have been several approaches to the creation of realistic images.  One is to analyze,

measure, approximate, and simulate the various physical processes that form a real-world image
(light transport, surface BRDFs, tone mapping, and more ).  This approach has met with only
limited success.  Furthermore, the few projects that have created images indistinguishable from
specific target photographs (such as the Cornell Box [Patt97]) do not reveal which visual factors a
viewer expects in order to perceive the image as real.

Another approach to realism is image-based rendering [Leng98], which has created synthetic
images which are nearly indistinguishable from photographs.  This is to be expected, of course,
since image-based rendering works by rearranging image samples taken directly from
photographs.  What was it about the original photographs that made them realistic in the first
place?

There exists an enormous amount of previous work on human vision and classical perception.
[Bruc96] and [Gord97] are good introductions.  Work in these fields includes low-level vision,
classical psychophysics, object recognition, scene understanding [Hage80], and more.  However,
the direct question of how people distinguish photographs from computed-generated images has
not been raised in the classical perceptual literature.  Indirectly, works such as [Parr00], which
analyzes the approximate 1/ƒ frequency spectrum of natural images, provide clues as to the nature
of real-world imagery.  An informal essay on how visual realism in computer graphics was given
by [Chiu94].  [Barb92] describes limitations of display technologies when trying to simulate direct
vision.

There are several recent works in the computer graphics literature dealing with human visual
perception (e.g., applications of psychophysics in [Ferw98], [Vole00], [Rama99]).   [Chal00]
describes various image quality metrics.  [Rush95] proposed perceptually-based image metrics to
differentiate between a pair of images, in order to evaluate the accuracy of synthetic renderings of
real-world scenes.  In [Thom98], shadows and other visual cues are tested against subjects’ ability
to discern properties such as object orientation or proximity.  [Horv97] measures subjects’
response to various settings of image quality, to guide an efficient renderer.  [Mcna00] compares
computer-generated images with real, physical scenes (viewed directly) to evaluate the perceptual
fidelity of the renderings, in a manner similar to [Meye86].  None of these perceptually-based
research efforts directly studied the visual causes for the perception of some images as
photographic and others as synthetic.

We conclude that while many areas of classical perception, realistic rendering, and
perceptually-based rendering have been thoroughly studied, the central problem of determining
what about an image tells a person whether it is photographic or computer-generated remains
largely unexplored.

3 DESIGNING A PERCEPTUAL TEST OF VISUAL REALISM
The goal of this project is to study the perception of realism in images using techniques

adapted from classical human visual perception.  The ultimate goal of this line of research is to
gain a full understanding of exactly what cues tell observers that an image is photographic or
computer-generated, so that rendering algorithms can be built to directly target these cues.  While
this end result is still far away, our intent in this work is to frame the problem in perceptual terms,
and to develop methods by which observers can be objectively tested, and meaningful analyses
performed.

3.1 Experimental question and task
Our strategy for finding out what visual cues matter for realism is to ask experimental

participants to directly rate a series of controlled images as either “real” or “not real” – but how do
we communicate to the participants what we mean by “real”?



One of the difficulties is that it would appear that subjects need a clear definition of  what is
meant by “realism” in order to properly perform the experiment and not yield invalid data.  Yet the
reason these experiments are being conducted in the first place is because we do not have a clear
definition of what makes an image realistic – we want them to tell us what makes an image look
real.  The more we tell subjects about our notion of realism or the context under which we are
studying it, the more their responses will be biased towards what they are told.

Our solution is to give the participants minimal instructions: they are only told that some of
the images are “photographic / real” while others are “computer-generated / not real,” and that
their job is to differentiate between the two (see Appendix for full written instructions).  We
therefore present the context of photographs versus CGI, but offer no guidance on how to actually
evaluate the two.  It is the subjects’ job to interpret these keywords and respond accordingly
(thereby providing an operational definition [Levi94] of realism).

Although one might worry that the variability inherent in these sparse instructions could lead
to invalid results, the exact purpose of this experimental method is to see whether different
participants converge to similar responses, given only a few keywords.

Another potential concern is whether the subjects’ responses are more a reflection of the
forced-choice nature of the experiment, rather than of the perceived realism of the images.  The
design of the experiment does force participants to make a choice, but if a given visual factor has
no effect whatsoever on a participant’s interpretation of “real / not real,” then the resulting
responses will be completely uncorrelated with the factor levels.  If there is a correlation, and one
which holds across the majority of participants, then the analysis will yield a statistically-
significant result, and we can claim that the visual factor does influence subjects’ interpretation of
“real” versus “not real.”  In our experiments we found that some visual factors did correlate with
subjects’ responses (they measurably influenced subjects’ interpretation of “real”) while other
visual factors did not.

3.2 Controlled image factors
We use a common experimental technique in which subjects are presented with sets of

controlled images which vary only along some predetermined dimensions, with all other image
factors held as constant as possible [Levi94].  We then analyze the pattern of responses across
these dimensions of interest.  If there is a statistically-significant change in the response, then we
can claim the existence of a causal relationship between the visual factor and the subjects’
responses (since the images are controlled against extraneous factors).

It is important to note that because of this design, we actually do not mix photographs and
computer-generated images in a single experiment.  If they were mixed, then unless the CG
images exactly matched the corresponding photographs, there would be confounding factors
which would interfere with the analysis.  For a single experiment, therefore,  the images should be
either all photographs or all computer-generated.  That is, they should be from the same source.
A consequence of this is that these experiments actually have no notion of “correctness” – it is not
appropriate to think of the responses as hits, misses, false positives, false negatives, etc.  It only
matters how the subjects’ response pattern changes across the dimensions of interest.

3.3 Types of images
The images in these experiments consisted of very simple scenes, containing only blocks,

spheres, and egg-shapes, in grayscale and without motion.  We chose this approach to limit the
number of factors to contend with in these early studies.  An initial concern when using simple
scenes was that the simplicity itself might cause a strong sense of unrealism, which could obscure
any true effect of other visual factors.  This proved not to be the case, as we did observe
statistically-significant effects based on certain visual factors.  The issue of scene simplicity is
further addressed in Section 6, where we present a series of experiments on number of objects,
variety of object shapes, and number of light sources.



3.4 Experiment methodology
All the experiments followed the same format.  A series of images was presented to each

subject, who rated each as either “real” or “not real.”  The images were all of simple objects.  They
varied according to some visual factors under investigation – either shadow softness, surface
smoothness, number of objects, variety of object shapes, or number of lights.  For example, in the
first experiment the shadows were at one of five possible levels, ranging from very sharp to very
soft.

The experimental method asks for only a binary “real / not real” response (rather than a
multi-point scale) to simplify the task for each subject (who only needs to maintain a single
internal differentiation threshold), and to reduce problems of scale interpretation across subjects.

The proportion of “real” responses for a particular level of a factor is the realism response
rating for that level (which we denote by ℜℜℜℜ ).  If we assign the numerical value of one to “real,”
and zero to “not real,” then the ℜℜℜℜ value is simply the mean of all numerical responses for a given
level.  For example, if 37 out of 60 images at the sharpest shadow level were rated as real, then we
say that ℜℜℜℜ = .62 for sharp shadows.  In the analysis stage, we infer the effect of the various visual
factors on realism by testing for statistically-significant changes in ℜℜℜℜ.

All image presentation and data collection was automated, and the order of presentation was
fully randomized for each subject at run-time.  Subjects ran all their image trials in one sitting
(with short breaks).  The average completion time was 1¼ hours.

The 21” monitors were set to 1152×864, and each image was 800×600.  Subjects sat
approximately two feet from the screen, giving a subtended viewing angle of the images of
approximately 30 degrees.  The experiments were all conducted under controlled illumination.

Subjects all gave informed consent, and were naïve to the study’s purpose, non-experts in
computer graphics or related visual fields, aged 20 to 50, with normal or corrected-to-normal
vision.

3.5 Creating the images
For the photographic experiments, we acquired images with an Olympus 3030Z digital

camera, at 800×600.  The green channel (least noisy) was used to create a grayscale image.  The
camera was locked into place for all the images.  The objects were wooden cubes and spheres (5
centimeters in height), and 7-cm wooden egg-shapes.  They were all painted with white acrylic
paint.  In all the images, the objects are set against a large draped sheet of white paper.

For the CG experiments, we used 3D Studio Max, with raytraced soft shadows.  The CG
experiments used only blocks (no spheres or egg-shapes), and the texture maps were acquired by
orthographically photographing our physical wooden blocks, and normalizing the resulting
textures.  The background texture map was taken from a photograph of our physical stage.  No
indirect illumination was computed.  Since the CG images were all batch-rendered from the same
dataset, the CG version of the experiments had very precise experimental control.

To reduce the dependence on any single spatial arrangement of objects (position and
orientation), we used several spatial arrangements in each experiment.  For example, in the
shadow softness experiment, we placed the objects in a given spatial layout, then gathered the
images at each of the five shadow levels (keeping the positions and orientations constant across
shadow levels for each “scene”).  We then rearranged the objects and gathered images again at
each shadow level, and so on.  Since the “scenes” are orthogonal to the main visual factors under
investigations, they do not in any way confound the analysis of the factors, but only reduces bias
towards any single spatial arrangement.

The images were all generated with the light source on the right side.  As the experiments ran,
images were randomly flipped horizontally, so that half of them appeared to have the light source
on the right side, and half on the left side (chosen randomly at run-time for each image
presentation).  This was done to reduce bias towards a particular light direction, and to reduce
fatigue on the participants by increasing the image variety.  Since the two image directions were
evenly and randomly distributed, they have no impact on the analysis (they cancel out).



3.6 Analysis method
The appropriate method of statistical analysis was dictated by two design elements.  First,

because the response variable was binary, standard linear regression models or analysis of
variance (ANOVA) are not appropriate (they are only valid on continuous data from normal
distributions).  Instead, the correct analysis is logistic regression [Wine91], an extension of linear
regression for binary data.  Logistic regression computes the correlation between a manipulated
factor (e.g., level of shadow softness) and a binary response variable (“real” vs. “not real”).

Second, because each subject ran many trials (and the responses are therefore not all
independent), a repeated measures analysis [Wine91] was called for, to take into account the
correlation between responses by the same subject.  We used the commercial statistics package
SUDAAN [Shah96], which handles repeated measures logistic regression designs.

A concern when subjects run many trials is that time-dependent/training effects may emerge.
That is, as the experiment progresses, responses could begin to drift towards one end of the
response scale.  We tested for this by computing the regression between trial number and subjects’
responses, and found no presence of time-dependent/training effects.

The subjects’ response times were also measured.  An analysis showed no correlation
between the subjects’ response times and their response values.  This indicates that subjects did
not respond any faster to images they rated as real than to those rated as not real.

3.7 Additional experimental details
A blank gray screen was displayed for approximately one second between images.  Subjects

chose between “real” and “not real” by pressing one of two keys. They were free to change their
responses (visual feedback was given) and they confirmed their current response and advanced to
the next image by pressing the spacebar.

To prevent regression to the mean – where responses degenerate as the experiment progresses
due to the lack of a fixed reference point – the images were presented in groups of eight.  In a first
pass the images in each group were only previewed, and in a second pass the subjects actually
rated them.  This provided an internal reference point for subjects throughout each experiment.  At
the start of each experiment, a number of images (sixteen) were presented, to allow the subject to
become acquainted with the experiment.  The responses for these were excluded from analysis.

4 SHADOW SOFTNESS
In this first experiment, we were interested in whether subjects’ realism response would

change significantly as a result of varying the shadow softness.  It is typically taken for granted
that very sharp shadows are seen as unrealistic, yet not much is known about how realism is
affected when shadows are not perfectly sharp.  For example, if softening a shadow makes an
image more realistic, does softening it twice as much double the increase in realism?

4.1 Setup:  Shadow Softness
There were five levels of shadow softness.  The lowest (sharpest) level was created with a

focused 300W spotlight, at 2.3 meters from the scene.  The next two levels were created with a
clear incandescent 300W light bulb, at 2.0 and 1.0 meters from the scene, respectively.  The last
(softest) two shadow levels were created with the same light bulb, but now diffused, at 1.0 and .2
meters.  The resulting penumbral spread angles were .39°, 1.5°, 2.5°, 5.2°, and 10.3°.  Close-ups of
some shadows from this experiment are shown below.  Note that the images are nearly identical
except for the shadows.

There were twelve scenes (different spatial arrangements), and each scene was photographed
at each of the five shadow levels.  That is, there were 12 sets of 5 images, where the five within
each set were nearly-identical except for their shadow softness.  The total number of images
presented to each subject was therefore 12×5 = 60 images.



Because the different shadow levels were generated using lights at different distances, the
images varied slightly in brightness and contrast.  They were manually adjusted to account for any
obvious exposure differences.  The remaining differences were small and randomly distributed,
and therefore should not affect the analysis.  This slight loss of experimental control when using
photographs is one of the motivations for performing experiments using computer-generated
images (as described in Section 7), which offer precise experimental control.

We measured the penumbra angles for the shadows in all of the images, and averaged these to
get a single penumbra angle measurement for each of the five shadow levels, as shown below.

    

Figure 2.  Detail of images from shadow softness experiment.  Average penumbra angles for the
five shadow levels were .39°, 1.5°, 2.5°, 5.2°, and 10.3°.   

4.2 Results:  ℜℜℜℜ vs. Shadow Softness
The experiment was run with 18 subjects.  The graph shows ℜℜℜℜ vs. shadow softness (the

proportion of “real” responses for each shadow level).  The error bars show the inter-subject
variability in ℜℜℜℜ – i.e., the standard error of the set of ℜℜℜℜ values, one from each subject, for the
given shadow level.
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Figure 3.  ℜℜℜℜ vs. shadow softness for
photographic experiment. (note: the x-
axis is not evenly scaled).  The
increase in ℜℜℜℜ rating becomes
statistically significant when the
shadow penumbra reaches 5.21
degrees.  There is no statistical
difference between the last two levels
of shadow softness.

The first question we ask is whether the subjects’ responses varied significantly due to
shadow softness.  To test this, we fit a repeated measures logistic regression model to the data,
using shadow softness as the independent variable, and the binary “Real / Not Real” response as
the dependent variable.  Shadow softness was found to be a statistically-significant predictor of
realism (χ2 = 4.31, df = 1, p = .0379)1.  Indeed, the subjects’ reported visual realism varied as a
result of shadow softness.

Clearly the sharpest shadows (leftmost level) were rated the lowest in realism.  This agrees
with the common notion in computer graphics that sharp shadows are unrealistic.  By performing
pair-wise comparisons in a repeated measures logistic regression analysis between the sharpest
shadow level and each of the four remaining shadow levels, we found that a statistically
significant difference was found  beginning at the 4th shadow level (5.21 degrees penumbra).  The
test was (χ2 = 5.39, df = 1, p = .0203).  This indicates that at 5.21 degrees, we begin to see a
measurable change in reported realism.  Furthermore, there is no statistical difference between the
last two (softest) shadow levels (χ2 = 2.64, df = 1, p = .1043).  From all this we can conclude that
in this set of images, perceived realism was maximized with respect to shadow softness in the
neighborhood of 5.21 degrees of penumbra angle.  Any additional increase in softness had

                                                       
1 A p-value of .05 or less denotes a statistically significant effect.



diminishing returns.  Rendering soft shadows is an expensive computation, so knowing how
people will respond to various shadow qualities can result in significant savings during rendering.

5 SURFACE SMOOTHNESS
It is often said in the computer graphics folklore that for an image to look realistic, “surfaces

should not be too smooth.”  Roughing up the surfaces, for example, was one of the major efforts in
the creation of Toy Story [Stre95].  Certainly, with computer graphics it is easy to create surfaces
with no surface variation whatsoever –  something unlikely to be encountered in real life.
Nevertheless, in the real world we do find objects with all degrees of surface smoothness.  A
freshly-painted wall is much smoother than a cork bulletin board, for example – but is a smooth
real-world surface really seen as less realistic than a rough real-world surface?  In this experiment
we tested this by comparing the realism response for photographs of smooth-textured objects
versus photographs of rough-textured objects.

5.1 Setup:  Surface Smoothness
We presented subjects with a series of photographs, where half the images contained smooth-

textured cubical blocks, and the other half contained rough-textured blocks.  The smooth textures
were created by painting the cubes with white spray-paint, which gave a smooth, even coat.  The
rough blocks were created by painting them white with a rough-bristled brush, which yielded
strongly-noticeable brush marks on the surface.

There were thirty scenes, with each scene in both rough-texture and smooth-texture form.
The total number of images presented to each subject was therefore 30×2 = 60 images.

Figure 4.  Detail of two images
from surface smoothness
experiment.  The smooth,
spray-painted blocks, such as
on the left, rated much lower
in realism (ℜ = .39) than the
rough, brush-painted blocks
(ℜ = .71)

5.2 Results:  ℜℜℜℜ vs. Surface Smoothness
This experiment was run on 18 subjects.  We found that there was a very strong difference in

realism for the two types of surfaces.  As shown in the graph, the rough-painted blocks rated much
higher than the spray-painted ones (ℜℜℜℜ = .71 vs. ℜℜℜℜ = .39).  This effect was stronger than the effect
due to shadow softness.

We tested for statistical significance
using surface type as the independent variable,
and the “real / not real” response as the binary
dependent variable.  The effect was strongly
statistically significant (χ2 = 13.04, df = 1, p =
.0003).  This indicates that the smoothness of
surface textures was undoubtedly a
determinant of realism – which backs up the
common graphics folklore that says that
surfaces should not be “too smooth.”
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Figure 2.  ℜℜℜℜ vs. surface smoothness.  There
was a strong effect due to surface type.



It is worthwhile to point again that this experiment was conducted using only photographs.
When presented with the question of whether the images were real (photographic), the smooth
textures ranked low, even though they were, in fact, physically-real surfaces.  This has
implications for areas of rendering such as global illumination research, where untextured objects
are typically used to report results.  This experiment suggests that these untextured images may
never look highly realistic – no matter how good the lighting algorithm.  As one critiques the
results of an advanced lighting algorithm, it is therefore worth remembering that if the surfaces are
untextured, then this alone may cause a much stronger decrease in realism than any error in the
light transport computation.

As a final point, this experiment only demonstrates that there was a difference in realism
between the two surface types, but does not characterize what it was about the rougher surface that
made it look more real.  As seen in the fields of texture synthesis and BRDF measurement, there
are many ways to analyze the properties of surfaces, and it remains as future work to discover
exactly which of these are important.

6 NUMBER OF OBJECTS, VARIETY OF OBJECT SHAPES,
AND NUMBER OF LIGHT SOURCES

In this set of experiments we looked at what happens to the reported realism as we
manipulated three factors:  the number of objects in the scene, the variety of object shapes, and the
number of light sources.  One might expect and assume that the subjects’ responses would
increase as more objects are added to a scene, the types of objects varied, or the number of light
sources increased.  But since these increases consume more memory and rendering time, it would
be useful to first verify what effect these increases will have on the realism of an image.

6.1 Setup:  Number of Objects / Variety of Object Shapes

  

  

Figure 3.  The horizontal axis increases the number of objects, and the vertical axis varies the
object shapes (blocks-only above, versus blocks, spheres, and egg-shapes below).
There was no statistically-significant difference in perceived realism along either axis.

We tested the effect of increasing the number and types of objects in a scene with a single
two-factor experiment.  The first factor was the number of objects – each image either contained 2,
4, 8, or 30 objects.  The second factor was the variety of object shapes, with two levels: each
image consisted either of only cubical blocks, or of half blocks and half curved objects (spheres
and egg-shapes).  For example, an image might have 8 objects which are all blocks, or it might



have 30 objects with mixed shapes (15 blocks and 15 spheres and egg-shapes).  Crossing the two
factors yields 4×2 = 8 images.  Subjects were shown five different sets of images, each set fully
representing the crossed factors (for a total of 4×2×5 = 40 images).

6.2 Setup:  Number of Light Sources
Before presenting the results of the previous setup, we describe the setup for the experiment

on the number of light sources.  There were three levels for the main factor:  one light, two lights,
and four lights.  To create images with accurate exposure and light source control, we
radiometrically blended photographs containing a single light each.

The same scene was repeatedly photographed, each time with a single light source placed at
four different locations along a 120° arc around the scene.  Then, to generate a new image with
two light sources, for example, our custom image-assembly utility randomly picked two light
source positions, and blended these images to create a single new image that appears to be lit by
two lights.  The camera was locked into place and operated via remote control to eliminate any
camera shake, so that the images would blend well.  Also, the aperture and exposure settings were
locked across all the original images.

The blend operation was radiometrically correct.  We first computed our digital camera’s
CCD response curve using the mkhdr software tool ([Diuk98], based on [Debe97]).  We then
mapped each image into radiometric space (mapped from camera pixel intensities to irradiance),
summed in that space (simulating the additive nature of light), adjusted the exposure (multiplied
the summed image by either 1/2 or 1/4, depending on the number of lights), and then mapped from
radiometric space back to camera space to yield the final image.

  
Figure 4.  Images from experiment on number of light sources.

Because blending images decreases camera noise, we actually acquired four photographs
from each of the four light source positions (i.e., 4×4 = 16 photographs per scene).  The final
images were all created by blending exactly four images out of sixteen (e.g., blending four
photographs with the same light position to create an image with “one” light), so they all had the
same level of camera noise present.

Note that it is not possible to keep all other factors absolutely constant when we increase the
number of light sources.  The light on each surface will change, the overall contrast will diminish,
and so forth.  However, these are all physically-dictated byproducts of increasing the number of
lights (the primary factor under investigation), and are accepted since they have a small visual
effect compared to the very distinct increase in number of shadows.

Finally, in addition to number of light sources, we also co-varied the shadow softness, to
reduce the bias on any particular shadow type.  The above process was repeated for each scene,
once with a spotlight and once with a diffuse light source.

There were 6 scenes, 2 shadow types per scene (soft and sharp), and 3 numbers of lights per
shadow type (1 light, 2 lights, or 4 lights).  Thus, this experiment consisted of 6×2×3 = 36 images.



6.3 Results: ℜℜℜℜ vs. Number of Objects / Variety of Object Shapes /
Number of Lights

Ten subjects ran the experiment on number of objects and variety of object shapes, and seven
subjects ran the experiment on number of light sources.  One can immediately see in the graphs
below that the realism response did not increase due to either number of objects, variety of object
shapes, or number of lights.  In fact, the graphs appear to indicate that there was actually a
decrease in reported realism when the number of objects and the number of lights was increased.

We tested for significance in all three cases.  For number of light sources, no significant
effect was found (χ2 = .56, df = 1, p =.4546).  For variety of object shapes (blocks-only versus
blocks, spheres, and egg-shapes), there was also no significant effect (χ2 = .58, df = 1, p =.4454).

For the number of objects, the results varied depending on how the analysis is performed.  If
we perform the analysis using the level number as the independent variable (taking on the values
1, 2, 3, and 4), then we see a borderline-significant effect (χ2 = 3.55, df = 1, p = .0597).  This is
because, as we can see in the graph, the response at the first level is indeed higher than at the last.
If, however, we perform the analysis using the actual number of objects as the independent
variable (taking on the values 2, 4, 8, and 30), then the regression is not considered significant (χ2

= 2.43, df = 1, p = .1193).  The interpretation of these two results is that while the low-endpoint
case (only two objects) indeed rated higher than the rest, the overall effect is not significant when
the large scale of the axis is considered (i.e., there was no significant difference between four
objects and thirty objects).

These were unexpected results.  Despite the tremendous visual difference between images
with only four objects and images with thirty, subjects did not respond any differently to them.
Furthermore, subjects were no more convinced by an image with several light sources and
shadows than they were by an image with only one, nor were they any more convinced by images
that showed a variety of objects types rather than only blocks.

These results have implications for computer graphics rendering.  For example, if an image of
a simple scene (such as those often found in conference proceedings) appears unrealistic, it is not
necessarily because of its simplicity.  There may be other factors which are causing the low
realism (e.g., sharp shadows or “too smooth” textures), which should be addressed first.
Furthermore, these results suggest that in a rendering application, it may be better to spend time on
generating proper soft shadows and adequate textures, rather than adding more of the same lights
or objects, or simply adding new objects for variety.

6.4 Ramifications of negative results
These negative, non-significant results have important implications for our experimental

technique.
One concern before these experiments were conducted was that the subjects might be able to

simply “decode” the experimental factors under investigation.  For example, if they notice that the
only difference between images is the shadow softness, then they may simply give every sharp-

ℜℜℜℜℜℜℜℜ

Figure 5.  ℜℜℜℜ vs. Number of objects / Variety of object shapes / Number of
lights.  None of the effects were statistically significant.



shadowed image one response, and every soft-shadowed image the opposite response.  We would
still be able to learn something from this, since at least we would know which end of the softness
spectrum they considered “real” and which “not real,” and what they considered to be the
boundary point.  However, this decoding is still not ideal, since we want to learn about subjects’
true internal perception of the images, and we want each image to be evaluated fairly.

However, because we have negative, non-significant results for these previous three
experiments – despite the strong, obvious visual differences in the images – we have evidence to
support the claim that subjects were not, in fact, simply decoding or “figuring out” the
experimental factors, but rather were responding with a true measure of their perception of realism
for each image.  Otherwise, we would have seen significant changes in ℜℜℜℜ for the previous three
experiments, just as we did for shadow softness and surface smoothness.

7 EXPERIMENTS USING COMPUTER GENERATED IMAGES
All the experiments presented thus far have employed photographs exclusively.  As explained

in Section 3.3, it is not important where the images come from, as long as they only differ along a
particular dimension of interest, with all other visual factors held as nearly constant as possible.
However, we can clearly achieve a higher level of control using computer-generated images than
using photographs.  Furthermore, with CGI we can easily manipulate certain dimensions that
would be difficult to do with photographs (e.g., secondary illumination).

It would be useful, therefore, to know whether our experimental methodology is valid in the
CG case.  If, for example, we found that the results from some all-CG experiments, mimicking the
photographic experiments above, yielded only responses of ℜℜℜℜ = 0 (all images rated as “not real”),
or had response curves that were qualitatively different than the curves for the photographic cases,
then we would lose confidence in the robustness of the experimental method.  To test this, we
replicated the shadow softness and surface texture experiments using CG images exclusively.  We
hoped to find the response curves to be similar to those from the photographic cases, allowing for
differences in scaling, offset, and noise.

We rendered images using 3D Studio Max, with raytraced soft shadows, and object textures
extracted from intensity-normalized orthographic photographs of the wooden cubes.  Seven
subjects ran the computer-generated experiments.  These were different subjects from those that
ran the photographic experiments, so there was no crossover effect between the two types of
images.

Figure 9.  ℜℜℜℜ vs. shadow softness, for CG
images.  Note the sharp increase between the
first two levels.  This may be because with CG
we could achieve a perfect point light source
(smaller than our physical spotlight).

Figure 10.  ℜℜℜℜ vs. surface texture, for CG
images.  We used textures obtained from
photographs of our wooden blocks.  The CG
results match the earlier photo-based results
closely.

By comparing the CG graphs to their photographic counterparts from the previous sections,
we see that the computer-generated version of these experiments yields qualitatively similar data.
In the surface texture experiment, the smooth texture is still much lower in ℜℜℜℜ than the rough
texture.  In the shadow softness case, the ℜℜℜℜ curve ascends as it did with the photographs.  There is



a difference here compared to the photographic case, however, in that the jump between the
sharpest and the second-sharpest shadows is much more pronounced for the CG case than for the
photographic case.  This may be due to the fact that in the CG renderer we were able to create a
true point light source, and so the sharpest shadow level in the CG case actually causes a sharper,
much more “unrealistic” penumbra than with the photographic spotlight.

We now perform tests for significance, by applying the same repeated measures logistic
regression analysis as before.  The test yielded significance for both the computer-generated
shadow softness experiment (χ2 = 4.92, df = 1, p=.0265) and for the computer-generated surface
smoothness experiment (χ2 = 20.51, df = 1, p < .0001).

Since the all-CG experiments yielded qualitatively-similar data to the photographic
experiments, and were statistically significant (as were the photographic experiments), we claim
that our experimental methodology indeed yields valid results using only computer-generated
images.  For completeness, the remaining three photographic experiments should also be
replicated in CG form – we leave this for future work.

Of course, if the rendered CG images had some artifacts that were extremely fake-looking,
this could have pulled the response curve down to zero, and the effect of the variable under
investigation would have  been lost.  Nonetheless, by having the option of running experiments
using only CG images, we open up the possibility of much more complicated experiments than
what could be done with photographs – e.g., investigations of global illumination, BRDF models,
tessellation / simplification techniques, and more.

8 CONCLUSION
A crucial component for the creation of realistic imagery is an objective understanding of the

perceptual criteria by which viewers decide if images are real or not.  While much research has
been invested into physics-based rendering, the experiments presented in this paper have shown
that even photographs (which are, by definition, “photo-real”) are not all equally realistic.
Physics, therefore, is not the only key to realism.  Once the graphics community understands how
different visual factors determine whether an observer perceives an image as photographic, then
new rendering algorithms can be developed to specifically target these visual cues.

In this paper we have presented an early step towards understanding this perceptual process,
with an experimental technique that directly asks subjects about the realism of images.  The
method was shown to be capable of affirming common assumption in graphics, of providing
quantitative data , and also of casting into doubt certain common notions about realistic rendering.
Furthermore, these experiments can be conducted using either photographs or computer generated
images, which greatly expands the range of hypotheses that can be tested.

As more visual factors are investigated using this experimental method and future techniques
for measuring the perception of realism in images, we will eventually have a full understanding of
what it really means for an image to look like a photograph or to look like computer graphics.
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APPENDIX:  INSTRUCTIONS TO SUBJECTS
These are the written instructions that were provided to each subject at the beginning of an

experimental session.  Aside from user-interface instructions for entering their responses, no other
guidance was given.

Today we are interested in gathering some information about how people perceive
images.  In the tasks that follow, you will see a number of images and we will ask you to
evaluate what you see.  There is no “right” or “wrong” answer to any response; we just want
to know what you think.  As you look at these images, try not to “think too much” about what
you see.  Go with your first impression.

In this experiment we will show you a number of images, one shown right after the
other.  Some of these images are photographs of real objects, and others are computer-
generated.  For each image, we want to know whether you think it is real or not real.
Sometimes it may be a close call, but just do the best you can.


